Diferencia entre revisiones de «Abrepuertas»

De Hacklab La Paz - r00thouse
Sin resumen de edición
Sin resumen de edición
 
(No se muestra una edición intermedia del mismo usuario)
Línea 25: Línea 25:
El código tambien esta en [https://github.com/artmint/arduino GitHub]
El código tambien esta en [https://github.com/artmint/arduino GitHub]


como pueden observar para este proyecto usamos varias fuentes de código y las unimos para obtener nuestro producto que aun le faltan hacer algunas modificaciones.
como pueden observar para este proyecto usamos varias fuentes de código y las unimos para obtener nuestro producto que aun le faltan hacer algunas modificaciones. <source lang="c">
<pre>#include <Keypad.h>
#include <Keypad.h>
#include <Password.h>
#include <Password.h>
#include <AFMotor.h>
#include <AFMotor.h>
Línea 34: Línea 34:
//define the cymbols on the buttons of the keypads
//define the cymbols on the buttons of the keypads
char hexaKeys[ROWS][COLS] = {
char hexaKeys[ROWS][COLS] = {
  {'1','2','3','U'},
{'1','2','3','U'},
  {'4','5','6','D'},
{'4','5','6','D'},
  {'7','8','9','F'},
{'7','8','9','F'},
  {'C','0','H','E'}
{'C','0','H','E'}
};
};
byte rowPins[ROWS] = {30, 32, 34, 36}; //connect to the row pinouts of the keypad
byte rowPins[ROWS] = {30, 32, 34, 36}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {38, 40, 42, 44}; //connect to the column pinouts of the keypad
byte colPins[COLS] = {38, 40, 42, 44}; //connect to the column pinouts of the keypad
Password password = Password( "26789" );  
Password password = Password( "98125" );  
//initialize an instance of class NewKeypad
//initialize an instance of class NewKeypad
Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);
Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);
Línea 57: Línea 57:




#define NOTE_B0 31
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define NOTE_DS8 4978


Línea 151: Línea 151:
//Mario main theme melody
//Mario main theme melody
int melody[] = {
int melody[] = {
  NOTE_E7, NOTE_E7,
NOTE_E7, NOTE_E7,
};
};
//Mario main them tempo
//Mario main them tempo
int tempo[] = {
int tempo[] = {
  12, 12,
12, 12,
};
};


Línea 162: Línea 162:
//Underworld melody
//Underworld melody
int underworld_melody[] = {
int underworld_melody[] = {
  NOTE_C4, NOTE_C5,
NOTE_C4, NOTE_C5,
};
};
//Underwolrd tempo
//Underwolrd tempo
int underworld_tempo[] = {
int underworld_tempo[] = {
  12, 12,
12, 12,
};
};


 




void setup(){
void setup(){
  arduino.setSpeed(10);
arduino.setSpeed(10);
  Serial.begin(9600);
Serial.begin(9600);
  pinMode(50, OUTPUT);//buzzer
pinMode(50, OUTPUT);//buzzer
}
}
 
void loop(){
void loop(){
  char customKey = customKeypad.getKey();
char customKey = customKeypad.getKey();
 
  if (customKey&nbsp;!= NO_KEY){
if (customKey&nbsp;!= NO_KEY){
    Serial.print("tecla ");
Serial.print("tecla ");
    Serial.println(customKey);
Serial.println(customKey);
    delay(10);
delay(10);
    switch (customKey) {
switch (customKey) {
            case 'E': checkPassword(); delay(1); break;   // Enter password
case 'E': checkPassword(); delay(1); break; // Enter password
            case 'C': password.reset(); delay(1); break;   // Clear buffer
case 'C': password.reset(); delay(1); break; // Clear buffer
            default: password.append(customKey); delay(1);       // add key to password
default: password.append(customKey); delay(1); // add key to password
    }
}
  }
}
}
}


void checkPassword() {   
void checkPassword() {  
    if (password.evaluate()) {                             // if password is right open box
  if (password.evaluate()) { // if password is right open box
        Serial.println("Accepted");
Serial.println("Accepted");
        delay(10);  
delay(10);  
        password.reset(); delay(1);
password.reset(); delay(1);
        sing(1);  
sing(1);  
        CMotores();
CMotores();
       
    } else {
} else {
        Serial.println("Denied");                         // if passwords wrong keep box locked
Serial.println("Denied"); // if passwords wrong keep box locked
        delay(10);
delay(10);
        password.reset(); delay(1);
password.reset(); delay(1);
        sing(2);   
sing(2);  
    }
  }
}
}
void CMotores(){
void CMotores(){
  numero_de_passos = angulo / (360 / passos_total);
numero_de_passos = angulo / (360 / passos_total);
   
   
//Mostra no serial monitor o numero de passos calculados
//Mostra no serial monitor o numero de passos calculados
Línea 227: Línea 227:
int song = 0;
int song = 0;


void sing(int s){    
void sing(int s){  
  // iterate over the notes of the melody:
// iterate over the notes of the melody:
  song = s;
song = s;
  if(song==2){
if(song==2){
    Serial.println(" 'Underworld Theme'");
Serial.println(" 'Underworld Theme'");
    int size = sizeof(underworld_melody) / sizeof(int);
int size = sizeof(underworld_melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {
for (int thisNote = 0; thisNote < size; thisNote++) {


      // to calculate the note duration, take one second
// to calculate the note duration, take one second
      // divided by the note type.
// divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000/underworld_tempo[thisNote];
int noteDuration = 1000/underworld_tempo[thisNote];


      buzz(melodyPin, underworld_melody[thisNote],noteDuration);
buzz(melodyPin, underworld_melody[thisNote],noteDuration);


      // to distinguish the notes, set a minimum time between them.
// to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
// the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);
delay(pauseBetweenNotes);


      // stop the tone playing:
// stop the tone playing:
      buzz(melodyPin, 0,noteDuration);
buzz(melodyPin, 0,noteDuration);


    }
}


  }else{
}else{


    Serial.println(" 'Mario Theme'");
Serial.println(" 'Mario Theme'");
    int size = sizeof(melody) / sizeof(int);
int size = sizeof(melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {
for (int thisNote = 0; thisNote < size; thisNote++) {


      // to calculate the note duration, take one second
// to calculate the note duration, take one second
      // divided by the note type.
// divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
//e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000/tempo[thisNote];
int noteDuration = 1000/tempo[thisNote];


      buzz(melodyPin, melody[thisNote],noteDuration);
buzz(melodyPin, melody[thisNote],noteDuration);


      // to distinguish the notes, set a minimum time between them.
// to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
// the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);
delay(pauseBetweenNotes);


      // stop the tone playing:
// stop the tone playing:
      buzz(melodyPin, 0,noteDuration);
buzz(melodyPin, 0,noteDuration);


    }
}
  }
}
}
}


void buzz(int targetPin, long frequency, long length) {
void buzz(int targetPin, long frequency, long length) {
  long delayValue = 1000000/frequency/2; // calculate the delay value between transitions
long delayValue = 1000000/frequency/2; // calculate the delay value between transitions
  //// 1 second's worth of microseconds, divided by the frequency, then split in half since
//// 1 second's worth of microseconds, divided by the frequency, then split in half since
  //// there are two phases to each cycle
//// there are two phases to each cycle
  long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing
long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing
  //// multiply frequency, which is really cycles per second, by the number of seconds to  
//// multiply frequency, which is really cycles per second, by the number of seconds to  
  //// get the total number of cycles to produce
//// get the total number of cycles to produce
  for (long i=0; i < numCycles; i++){ // for the calculated length of time...
for (long i=0; i < numCycles; i++){ // for the calculated length of time...
    digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram
digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram
    delayMicroseconds(delayValue); // wait for the calculated delay value
delayMicroseconds(delayValue); // wait for the calculated delay value
    digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram
digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram
    delayMicroseconds(delayValue); // wait again or the calculated delay value
delayMicroseconds(delayValue); // wait again or the calculated delay value
  }
}
}
}
</pre>
</source> <span style="font-size:large">'''Resultado'''</span>
<span style="font-size:large">'''Resultado'''</span>


----
----
Línea 304: Línea 303:
[[File:DSC 0006.JPG|center|800x600px|DSC 0006.JPG]]
[[File:DSC 0006.JPG|center|800x600px|DSC 0006.JPG]]


<span style="font-size:large">'''<br/>'''</span>
 


<span style="font-size:large">'''Referencias'''</span>
<span style="font-size:large">'''Referencias'''</span>

Revisión actual - 21:48 6 sep 2014

En el HL no todos cuentan con una llave para ingresar a la casa, esto resuelve un poco este problema.

Armado


Tambien en la red hay varios ejemplos de tipos de armado con diferentes funciones, en nuestro caso usamos un motor DC de una impresora vieja que teniamos.

Usamos lo siguiente:

  1. Motor DC paso a paso (impresora)
  2. Key 4x4
  3. Arduino Mega ADK
  4. Arduino motor shield L293D
  5. Bocina vieja de CPU
Cmotorpuerta.jpg


Código


El código tambien esta en GitHub

como pueden observar para este proyecto usamos varias fuentes de código y las unimos para obtener nuestro producto que aun le faltan hacer algunas modificaciones.

#include <Keypad.h>
#include <Password.h>
#include <AFMotor.h>

const byte ROWS = 4; //four rows
const byte COLS = 4; //four columns
//define the cymbols on the buttons of the keypads
char hexaKeys[ROWS][COLS] = {
 {'1','2','3','U'},
 {'4','5','6','D'},
 {'7','8','9','F'},
 {'C','0','H','E'}
};
byte rowPins[ROWS] = {30, 32, 34, 36}; //connect to the row pinouts of the keypad
byte colPins[COLS] = {38, 40, 42, 44}; //connect to the column pinouts of the keypad
Password password = Password( "98125" ); 
//initialize an instance of class NewKeypad
Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);


double passos_total = 512; //Numero de passos para 1 rotacao total
 
int porta_motor = 2; //1 para motor em M1/M2 e 2 para motor em M3/M4
int angulo = 90; //Angulo de rotacao do eixo
 
double numero_de_passos = 0; //Armazena o numero de passos que o motor vai girar
 
AF_Stepper arduino(passos_total, porta_motor); //Define os parametros do motor



#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978


#define melodyPin 50
//Mario main theme melody
int melody[] = {
 NOTE_E7, NOTE_E7,
};
//Mario main them tempo
int tempo[] = {
 12, 12,
};

//

//Underworld melody
int underworld_melody[] = {
 NOTE_C4, NOTE_C5,
};
//Underwolrd tempo
int underworld_tempo[] = {
 12, 12,
};

 


void setup(){
 arduino.setSpeed(10);
 Serial.begin(9600);
 pinMode(50, OUTPUT);//buzzer
}
 
void loop(){
 char customKey = customKeypad.getKey();
 
 if (customKey&nbsp;!= NO_KEY){
 Serial.print("tecla ");
 Serial.println(customKey);
 delay(10);
 switch (customKey) {
 case 'E': checkPassword(); delay(1); break; // Enter password
 case 'C': password.reset(); delay(1); break; // Clear buffer
 default: password.append(customKey); delay(1); // add key to password
 }
 }
}

void checkPassword() { 
 if (password.evaluate()) { // if password is right open box
 Serial.println("Accepted");
 delay(10); 
 password.reset(); delay(1);
 sing(1); 
 CMotores();
 
 } else {
 Serial.println("Denied"); // if passwords wrong keep box locked
 delay(10);
 password.reset(); delay(1);
 sing(2); 
 }
}
void CMotores(){
 numero_de_passos = angulo / (360 / passos_total);
 
//Mostra no serial monitor o numero de passos calculados
Serial.println(numero_de_passos);
 
//Move o motor. Use FORWARD para sentido horario,
//BACKWARD para anti-horario
arduino.step(numero_de_passos, FORWARD, SINGLE);
arduino.release();
 
delay(2000);
}




int song = 0;

void sing(int s){ 
 // iterate over the notes of the melody:
 song = s;
 if(song==2){
 Serial.println(" 'Underworld Theme'");
 int size = sizeof(underworld_melody) / sizeof(int);
 for (int thisNote = 0; thisNote < size; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000/underworld_tempo[thisNote];

 buzz(melodyPin, underworld_melody[thisNote],noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note's duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);

 // stop the tone playing:
 buzz(melodyPin, 0,noteDuration);

 }

 }else{

 Serial.println(" 'Mario Theme'");
 int size = sizeof(melody) / sizeof(int);
 for (int thisNote = 0; thisNote < size; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000/tempo[thisNote];

 buzz(melodyPin, melody[thisNote],noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note's duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);

 // stop the tone playing:
 buzz(melodyPin, 0,noteDuration);

 }
 }
}

void buzz(int targetPin, long frequency, long length) {
 long delayValue = 1000000/frequency/2; // calculate the delay value between transitions
 //// 1 second's worth of microseconds, divided by the frequency, then split in half since
 //// there are two phases to each cycle
 long numCycles = frequency * length/ 1000; // calculate the number of cycles for proper timing
 //// multiply frequency, which is really cycles per second, by the number of seconds to 
 //// get the total number of cycles to produce
 for (long i=0; i < numCycles; i++){ // for the calculated length of time...
 digitalWrite(targetPin,HIGH); // write the buzzer pin high to push out the diaphram
 delayMicroseconds(delayValue); // wait for the calculated delay value
 digitalWrite(targetPin,LOW); // write the buzzer pin low to pull back the diaphram
 delayMicroseconds(delayValue); // wait again or the calculated delay value
 }
}

Resultado


Unas fotos del trabajo

DSC 0002.JPG
DSC 0004.JPG
DSC 0006.JPG


Referencias


http://blog.filipeflop.com/motores-e-servos/controle-motor-dc-arduino-motor-shield.html

http://playground.arduino.cc/Code/Password